Shop Mobile More Submit  Join Login
Fi's curve by dekuNukem Fi's curve by dekuNukem
this is the parametric equation of first 80 terms of the Fourier series of Fi's outline, calculated by a little program I've been writing :)

----------------------------

t from 0 to any value grater than 2043, since it's periodic, in step of 1

x=299.139+151.632cos(0.00261473t)+49.3764sin(0.00261473t)-49.38cos(0.00522945t)+65.609sin(0.00522945t)+13.1554cos(0.00784418t)+17.0093sin(0.00784418t)-48.9304cos(0.0104589t)+16.3024sin(0.0104589t)-0.136814cos(0.0130736t)-13.8346sin(0.0130736t)-12.5786cos(0.0156884t)-4.47901sin(0.0156884t)+3.81205cos(0.0183031t)-5.75338sin(0.0183031t)+0.868966cos(0.0209178t)+0.424343sin(0.0209178t)+1.27066cos(0.0235325t)-0.819172sin(0.0235325t)-0.209612cos(0.0261473t)-1.51822sin(0.0261473t)+2.41515cos(0.028762t)+0.267361sin(0.028762t)-4.26122cos(0.0313767t)+3.36017sin(0.0313767t)-5.22542cos(0.0339914t)-4.52029sin(0.0339914t)+0.842086cos(0.0366062t)+0.865947sin(0.0366062t)+0.440577cos(0.0392209t)+0.0333781sin(0.0392209t)-3.65073cos(0.0418356t)-1.23141sin(0.0418356t)+0.841068cos(0.0444503t)-1.77486sin(0.0444503t)-0.413686cos(0.0470651t)+0.1363sin(0.0470651t)-0.918951cos(0.0496798t)+0.593549sin(0.0496798t)-0.425671cos(0.0522945t)+0.867999sin(0.0522945t)-2.16939cos(0.0549092t)+0.896228sin(0.0549092t)+1.25783cos(0.057524t)+0.738979sin(0.057524t)+0.546908cos(0.0601387t)-1.42285sin(0.0601387t)-1.85749cos(0.0627534t)+0.122171sin(0.0627534t)-0.035243cos(0.0653681t)-0.203264sin(0.0653681t)-0.678393cos(0.0679829t)-0.534696sin(0.0679829t)-0.470279cos(0.0705976t)+0.434001sin(0.0705976t)+0.230943cos(0.0732123t)+0.709243sin(0.0732123t)-0.283971cos(0.075827t)+0.426655sin(0.075827t)+0.216696cos(0.0784418t)-0.344307sin(0.0784418t)-0.0825534cos(0.0810565t)+0.0234494sin(0.0810565t)-0.747879cos(0.0836712t)+1.00296sin(0.0836712t)-0.157449cos(0.0862859t)-0.430102sin(0.0862859t)+0.154951cos(0.0889007t)+0.026381sin(0.0889007t)+0.251773cos(0.0915154t)+0.407644sin(0.0915154t)+0.105287cos(0.0941301t)-0.0605952sin(0.0941301t)+0.288626cos(0.0967448t)-0.184532sin(0.0967448t)-0.187994cos(0.0993596t)-0.37608sin(0.0993596t)+0.12364cos(0.101974t)-0.0985595sin(0.101974t)+0.202272cos(0.104589t)+0.670362sin(0.104589t)-0.596008cos(0.107204t)-0.287576sin(0.107204t)+0.0362554cos(0.109818t)-0.30277sin(0.109818t)+0.362532cos(0.112433t)-0.0675302sin(0.112433t)-0.390384cos(0.115048t)-0.153796sin(0.115048t)-0.215656cos(0.117663t)-0.40988sin(0.117663t)+0.122651sin(0.120277t)-0.109213cos(0.122892t)+0.163631sin(0.122892t)-0.0282183cos(0.125507t)+0.0452233sin(0.125507t)-0.0547171cos(0.128122t)-0.125344sin(0.128122t)-0.0779293cos(0.130736t)-0.108139cos(0.133351t)-0.0200374sin(0.133351t)-0.271415cos(0.135966t)+0.0308472sin(0.135966t)-0.490322cos(0.13858t)-0.251122sin(0.13858t)+0.311209cos(0.141195t)+0.184119sin(0.141195t)+0.128904cos(0.14381t)+0.234946sin(0.14381t)-0.278139cos(0.146425t)+0.0341828sin(0.146425t)+0.0646717cos(0.149039t)-0.024145sin(0.149039t)-0.0357384cos(0.151654t)-0.0527744sin(0.151654t)-0.0985696cos(0.154269t)+0.044656sin(0.154269t)+0.0303344cos(0.156884t)+0.245766sin(0.156884t)-0.336803cos(0.159498t)+0.160531sin(0.159498t)+0.272239cos(0.162113t)-0.0611847sin(0.162113t)+0.172832cos(0.164728t)-0.0819194sin(0.164728t)-0.0931507cos(0.167342t)+0.140217sin(0.167342t)+0.215909cos(0.169957t)+0.0102621cos(0.172572t)-0.102472sin(0.172572t)-0.0571631cos(0.175187t)+0.0522077sin(0.175187t)+0.0499651cos(0.177801t)-0.0523661sin(0.177801t)+0.060089cos(0.180416t)-0.0269141sin(0.180416t)+0.114535cos(0.183031t)+0.0344179sin(0.183031t)-0.117827cos(0.185646t)-0.0937243sin(0.185646t)+0.06581cos(0.18826t)-0.0757279sin(0.18826t)+0.0451403cos(0.190875t)-0.228091sin(0.190875t)-0.0298123cos(0.19349t)-0.0863743sin(0.19349t)+0.0501125cos(0.196104t)+0.0750188sin(0.196104t)-0.15669cos(0.198719t)-0.112897sin(0.198719t)-0.065242cos(0.201334t)-0.137999sin(0.201334t)+0.0209298cos(0.203949t)+0.0477146sin(0.203949t)-0.11776cos(0.206563t)+0.0108976cos(0.209178t)-0.0798449sin(0.209178t)

y=297.124-61.5146cos(0.00261473t)+179.521sin(0.00261473t)-0.60219cos(0.00522945t)+4.96701sin(0.00522945t)+51.8088cos(0.00784418t)-28.5274sin(0.00784418t)+18.7167cos(0.0104589t)+21.3319sin(0.0104589t)+23.236cos(0.0130736t)-10.8744sin(0.0130736t)-2.9639cos(0.0156884t)-26.24sin(0.0156884t)-3.61029cos(0.0183031t)+10.0766sin(0.0183031t)+0.0316733cos(0.0209178t)+10.4629sin(0.0209178t)+7.5227cos(0.0235325t)+2.25258sin(0.0235325t)+3.9934cos(0.0261473t)-4.54765sin(0.0261473t)-2.9762cos(0.028762t)-0.443992sin(0.028762t)-1.6157cos(0.0313767t)-0.302063sin(0.0313767t)+6.4402cos(0.0339914t)-5.21047sin(0.0339914t)-0.354375cos(0.0366062t)+1.8817sin(0.0366062t)+0.177877cos(0.0392209t)+1.54152sin(0.0392209t)+0.586143cos(0.0418356t)+1.39294sin(0.0418356t)+3.27732cos(0.0444503t)+0.53293sin(0.0444503t)-0.525553cos(0.0470651t)-0.269322sin(0.0470651t)-0.260657cos(0.0496798t)-1.46015sin(0.0496798t)+0.0622982cos(0.0522945t)+0.173383sin(0.0522945t)-0.678051cos(0.0549092t)-0.441349sin(0.0549092t)+0.257883cos(0.057524t)+1.18966sin(0.057524t)+2.33105cos(0.0601387t)-1.90749sin(0.0601387t)+0.661525cos(0.0627534t)+0.549985sin(0.0627534t)+0.689358cos(0.0653681t)-0.295285sin(0.0653681t)-0.404819cos(0.0679829t)+1.3376sin(0.0679829t)+0.53767cos(0.0705976t)-0.204528sin(0.0705976t)-1.38106cos(0.0732123t)-0.108677sin(0.0732123t)-0.431921cos(0.075827t)-0.0167306sin(0.075827t)+0.0267205cos(0.0784418t)-0.0359076sin(0.0784418t)+1.06893cos(0.0810565t)-1.14589sin(0.0810565t)-0.0906054cos(0.0836712t)-0.775468sin(0.0836712t)-0.217596cos(0.0862859t)+0.126666sin(0.0862859t)-0.161026cos(0.0889007t)-0.4352sin(0.0889007t)+0.242862cos(0.0915154t)+0.0882071sin(0.0915154t)+0.380526cos(0.0941301t)-1.16465sin(0.0941301t)+0.963364cos(0.0967448t)+0.290961sin(0.0967448t)+0.349027cos(0.0993596t)+0.0197314sin(0.0993596t)+0.0612632cos(0.101974t)-0.215435sin(0.101974t)+0.381685cos(0.104589t)+0.246148sin(0.104589t)+0.0851341cos(0.107204t)+0.0196634sin(0.107204t)-0.324174cos(0.109818t)+0.118938sin(0.109818t)+0.454857cos(0.112433t)-0.292328sin(0.112433t)+0.494277cos(0.115048t)+0.432404sin(0.115048t)+0.296906cos(0.117663t)-0.184285sin(0.117663t)-0.140106cos(0.120277t)-0.185441sin(0.120277t)-0.316816cos(0.122892t)+0.13843sin(0.122892t)+0.530491cos(0.125507t)-0.149426sin(0.125507t)+0.148489cos(0.128122t)+0.160138sin(0.128122t)+0.0271421cos(0.130736t)-0.322685sin(0.130736t)+0.271428cos(0.133351t)-0.312006sin(0.133351t)+0.584396cos(0.135966t)+0.250381sin(0.135966t)+0.269902cos(0.13858t)-0.145548sin(0.13858t)-0.0712624cos(0.141195t)+0.209226sin(0.141195t)+0.170193cos(0.14381t)+0.0970892sin(0.14381t)-0.0947235cos(0.146425t)+0.151713sin(0.146425t)+0.200618cos(0.149039t)-0.10361sin(0.149039t)+0.166182cos(0.151654t)+0.0279536sin(0.151654t)-0.143746cos(0.154269t)-0.278075sin(0.154269t)+0.398415cos(0.156884t)+0.0143421sin(0.156884t)-0.172661cos(0.159498t)+0.211932sin(0.159498t)+0.0783775cos(0.162113t)+0.145459sin(0.162113t)+0.127611cos(0.164728t)-0.290482sin(0.164728t)+0.115213cos(0.167342t)+0.170403sin(0.167342t)-0.0281055cos(0.169957t)+0.172267sin(0.169957t)-0.0192239cos(0.172572t)-0.0714131sin(0.175187t)-0.0619489cos(0.177801t)-0.0981664sin(0.177801t)+0.0440828cos(0.180416t)+0.231012sin(0.180416t)-0.0525586cos(0.183031t)+0.0166199sin(0.183031t)+0.184223cos(0.185646t)-0.288776sin(0.185646t)+0.109281cos(0.18826t)+0.116256sin(0.18826t)-0.055222cos(0.190875t)-0.0145151sin(0.190875t)+0.0829752cos(0.19349t)+0.0348232sin(0.19349t)+0.115026cos(0.196104t)-0.0123434sin(0.196104t)+0.0370567cos(0.198719t)+0.0515707sin(0.198719t)+0.0915175cos(0.201334t)-0.0365395sin(0.201334t)+0.0617427cos(0.203949t)+0.0489547sin(0.203949t)+0.0319367sin(0.206563t)+0.0657448cos(0.209178t)-0.0712816sin(0.209178t)
Add a Comment:
 
:iconrisingstar1011:
risingstar1011 Featured By Owner Jul 22, 2014
...

Math and Zelda...oh the weird things I find on the Internet at night.
Reply
:iconcontraltissimo:
Contraltissimo Featured By Owner Apr 15, 2013
What have you done.... :faint:
Reply
:iconaquos4:
Aquos4 Featured By Owner Apr 15, 2013  Hobbyist Writer
the ridiculous amount of math, my simplistic gamer brain can't handle all of these mathematical equations and coordinates D: *brain implodes*
Reply
:iconoratokikuy:
oratoKikuY Featured By Owner Apr 14, 2013  Hobbyist General Artist
see it, understand it and feel like an engineer :iconsuperw00tplz:
Reply
:iconroonifer:
Roonifer Featured By Owner Apr 14, 2013  Student Filmographer
......Wh-wh-wh...
Reply
:iconumbraz:
Umbraz Featured By Owner Apr 14, 2013   General Artist
wow 0.0 that's really awesome!
Reply
:iconrubydragoncat:
RubyDragonCat Featured By Owner Apr 14, 2013  Hobbyist General Artist
Too...many...numbers... *brain explodes*
Reply
:iconmizukiharuki:
MizukiHaruki Featured By Owner Apr 14, 2013  Hobbyist Traditional Artist
..... LOOK AT ALL THOSE NUMBERS!!!!
:iconohnoesplz:
Reply
:iconcreseliia:
Creseliia Featured By Owner Apr 13, 2013  Student Digital Artist
Wooo looks fancy and awesome... although I don't have a clue how to do it
Reply
:icontaekwondomonk:
TaeKwonDoMonk Featured By Owner Apr 5, 2013  Hobbyist Artist
I know I used some equations to create a character once, but not anywhere this meticulous. O_O This is impressive. :icongreatjobplz:
Reply
Add a Comment:
 
×




Details

Submitted on
April 5, 2013
Image Size
72.5 KB
Resolution
1068×562
Link
Thumb
Embed

Stats

Views
1,663
Favourites
22 (who?)
Comments
10
Downloads
3
×